|
|
欢迎光临丁云龙老师教学网页
6 E, e( D/ L5 J* H/ whttp://csm01.csu.edu.tw/0166/2007Ting/index.htm
3 U+ ^! G4 v; m3 Z; k% c" e$ y& H! r1. 此教学课程模拟麻省理工开放式课程, 加入影音讲解, 内容针对初学入门者, 偏重运算, 尤其适合技职体系的同学
% r- n: r0 v. O2 M4 h) G; a2. 这是一个开放式影音课程, 可配合学校教学, 达到预习及复习的效果
3 L4 ^$ d r; O& M) m3. 此教学课程以四技大一微积分为主, 高中数学 及国高中衔接课程为辅
\- O( H( t# A( N% a/ v# `! S4. 限于人力、时间等因素,此教学网页暂不设置讨论区
( l- c# I9 J: \( N* N9 |3 ~! @' k: X6 R) ^6 v
CHAPTER 1 LIMITS OF FUNCTIONS
* Y5 P& v8 G( }0 oSection 1-1 Limits$ | J+ i' Q; `- D" e; A/ g
Section 1-2 One-Sided Limit
9 ~' _" ?6 X4 E3 SSection 1-3 Continuity* v: y; U* j% a; j x
Section 1-4 A Limit at Infinity and Infinite Limit
! w) N1 O: D, g5 ], [, P & S9 F# e5 B2 r5 {: M4 Y* E, |" ~& n
CHAPTER 2 DERIVATIVE
. X0 D: J" l3 S5 c; o; lSection 2-1 Definition of Derivative2 f4 |- @" u2 `; L
Section 2-2 The Rule of Differentiation
- Z- _' A0 v+ g7 d- X9 F1 {Section 2-3 Chain Rule and Implicit Differentiation$ {( B/ p U @6 n1 `# J
Section 2-4 Derivatives of Exponential and Logarithmic F ; ?; v5 T7 T& |& o/ i1 s5 k/ |5 P2 F; M
Section 2-5 Numerical Approximate –Differentials
9 C0 u0 n8 r- k' _. ?( sSection 2-6 Derivatives of Trigonometric Functions( b: ?9 X4 q f g, M' _6 z
Section 2-7 Derivatives of Inverse Trigonometric F5 r- v8 U* s1 ~4 X- U: w
4 f$ D( D# x5 f9 U
CHAPTER 3 APPLICATIONS OF DERIVATIVES
+ C5 ?, @- y/ W( b! x; F2 ZSection 3-1 The Mean Value Theorem and its Applications4 k6 O: P S4 T
Section 3-2 Increasing and Decreasing Functions8 w( S7 v: J; {5 }* z9 @; c; q# M: O
Section 3-3 Maximum and Minimum Values
& K: f# a9 m& _9 L X& BSection 3-4 The Max -Min Problems
% c8 k, O' w s0 V9 y& [Section 3-5 Concavity and Points of Inflection & v/ Z5 r7 l4 q7 X
Section 3-6 Asymptotes
- W& ]+ I$ @# ]/ qSection 3-7 Sketching curve
1 w- P+ P, l! J: K! fSection 3-8 L' Hopital's Rule- W3 }2 B( Q* }6 M" q+ G9 ~- ]
Section 3-9 Taylor Series( Z; M8 G# J+ P/ |& ^. I
Section 3-10 Applications In Marginal Analysis7 v, l9 z& ~! j9 q: C
Section 3-11 Elasticity5 X$ o2 \2 l5 S9 K& Y
0 Y' q) S+ c& }9 O9 zCHAPTER 4 THE INDEFINITE INTEGRALS
: c, j% |0 q* D: I7 CSection 4-1 Antiderivative and The Indefinite Integrals
# k: O" x* _: NSection 4-2 Integration by Changing Variables
, B. r7 A* L2 L. nSection 4-3 Integration by Parts) g1 s, I' y3 O9 {! z6 Q
Section 4-4 The Trigonometric Integrals4 L* ^3 N4 d9 e t7 G
Section 4-5 The Integration by Partial Fractions
9 \, m( r' B8 t) W" j: pSection 4-6 Trigonometric and Half-Angle Substitution
- g" x: s% T% w! U6 p
7 X+ ^* w+ A7 Q# X" p8 c6 ~CHAPTER 5 THE DEFINITE INTEGRALS3 c, z6 z, g5 L% E
Section 5-1 Areas and the Definition of Definite Integral* q, Y2 ^( w! D7 ]
Section 5-2 The Fundamental Theorem of Calculus4 s) ?0 ]" x" W [5 ^ d$ S
Section 5-3 The Approximate Integration4 `% t1 P( j$ A# T3 x) q5 X
Section 5-4 The Improper Integrals
1 X2 Y! e; z# L7 d
; L5 K. U) D2 z6 D0 @# c$ ECHAPTER 6 APPLICATIONS OF INTEGRATION# T7 K a& O5 n) f3 k. n) R
Section 6-1 Areas between Curves
, {0 V; W/ F$ s2 @Section 6-2 Areas in Polar Coordinates: m, J5 @5 s2 E s1 I
Section 6-3 Arc Length
9 \" U" r" B* RSection 6-4 Volumes and The Volumes of Revolution
! O; d( V' \% A, L6 I: \" W+ x' @Section 6-5 Area of a Surface of Revolution - R+ c( w) h d3 H5 `
Section 6-6 Centroid of A Plane Region: _" ^2 B- q" d
Section 6-7 Work and The Problems of The Engineering
* v! d) w x5 j' P( ^4 m$ S
& e- E$ n" O0 }: \; t+ jCHAPTER 7 PARTIAL DERIVATIVES
4 J; B& G" e- p+ ~+ |Section 7-1 Limits and Continuity
& \; o W% K0 O; G, m. iSection 7-2 Partial Derivatives
9 l) K, A3 X( J$ J* MSection 7-3 The Differentials and Chain Rules7 W. u7 r1 H' O1 M; G: |2 \
Section 7-4 Extrema of Functions of Two Variables' w) n- l. X. g3 P& Z
Section 7-5 Directional Derivatives, Gradient and Tangent Plane
! t! {) C# G1 E. [
! E& ^' M6 u1 o& {CHAPTER 8 MULTIPLE INTEGRALS
, l* ^. l$ q& D1 Z6 a( J/ X1 \Section 8-1 Integrals over a Rectangle: p7 m! ~* [4 b' Z
Section 8-2 Integrals over a Region
' I* R [ x% p/ E& ~ z! sSection 8-3 Three-Dimensional Iterated Integrals
, H6 W1 p$ V5 N2 i4 XSection 8-4 Multiple Integration in Polar, Cylindrical and Spherical Coordinates5 Y9 G. }! U* A5 B9 y
Section 8-5 Applications of Multiple Integrals8 f5 t' q& ]% ]8 C9 o7 w$ s. S
|
|