|
|
欢迎光临丁云龙老师教学网页
8 P' M6 C& B$ G6 bhttp://csm01.csu.edu.tw/0166/2007Ting/index.htm0 }: a3 n2 D' [+ |2 Z7 A
1. 此教学课程模拟麻省理工开放式课程, 加入影音讲解, 内容针对初学入门者, 偏重运算, 尤其适合技职体系的同学
" P! `- z$ W8 R! q) t/ Y2. 这是一个开放式影音课程, 可配合学校教学, 达到预习及复习的效果. G8 T: L0 Y% _4 q2 k7 A! U
3. 此教学课程以四技大一微积分为主, 高中数学 及国高中衔接课程为辅
6 y$ v8 r: k0 c" H3 N# ]1 S; g4. 限于人力、时间等因素,此教学网页暂不设置讨论区
0 [/ [3 Z Z' {1 b5 h3 t% V' _; s+ ]6 @; I: e0 A
CHAPTER 1 LIMITS OF FUNCTIONS
* ]& c) b) N R, PSection 1-1 Limits
4 j" |8 d( W3 \6 i `Section 1-2 One-Sided Limit: A) G0 |% P8 ]+ J& B8 @
Section 1-3 Continuity6 z! L" x; R- ` p# @( ?* o! L
Section 1-4 A Limit at Infinity and Infinite Limit
" w p/ ^# j) }% y" O* N; K0 k 5 W8 n4 N7 o. ^
CHAPTER 2 DERIVATIVE
; h4 c' j. ~ _9 S+ I7 nSection 2-1 Definition of Derivative7 W0 |' U' `# [0 B2 }2 b: J
Section 2-2 The Rule of Differentiation
" F0 D% ~" n m& Q6 S q- _# {Section 2-3 Chain Rule and Implicit Differentiation2 ?- n# Y4 b! ~, f. `9 U
Section 2-4 Derivatives of Exponential and Logarithmic F
; n! M+ a! f7 G; gSection 2-5 Numerical Approximate –Differentials) b6 L( G3 T% }, T
Section 2-6 Derivatives of Trigonometric Functions
1 W" m5 H4 {6 q u; ?Section 2-7 Derivatives of Inverse Trigonometric F; Q# }) I& c' d. P( V: `7 Y! T8 _+ F$ y
+ Y7 h+ |: L! ECHAPTER 3 APPLICATIONS OF DERIVATIVES% Z2 Q3 p4 T6 K2 ^! Y: ~
Section 3-1 The Mean Value Theorem and its Applications: v$ ^7 V0 L: H4 m2 `& q' d1 l
Section 3-2 Increasing and Decreasing Functions
, {: b) q2 W/ C% YSection 3-3 Maximum and Minimum Values' e8 ^, n' r9 U6 `3 ^6 b$ `
Section 3-4 The Max -Min Problems
* r3 L- E& W# v( YSection 3-5 Concavity and Points of Inflection ( Y! p. E: y0 B4 }4 R, f3 Y
Section 3-6 Asymptotes6 H6 a" l& ~1 T" L! z. g! ^% U# W
Section 3-7 Sketching curve; ~0 @& r8 z, n- F3 K
Section 3-8 L' Hopital's Rule
5 a1 h5 @; K$ F) n# S' F+ V6 WSection 3-9 Taylor Series- G. o1 R" I C' g6 v
Section 3-10 Applications In Marginal Analysis
, L: P+ G2 t+ O5 t2 Y1 ?Section 3-11 Elasticity
5 [3 l H4 E7 }2 M6 i% T! y, N9 f
N5 C$ V! w* o- b6 x0 S3 hCHAPTER 4 THE INDEFINITE INTEGRALS! I+ c- P# {' |$ F; n& u
Section 4-1 Antiderivative and The Indefinite Integrals: A8 E/ h9 {7 N; G2 K
Section 4-2 Integration by Changing Variables
% R- n9 }3 u0 `# R C$ A# g% BSection 4-3 Integration by Parts
! t9 Q# X3 E4 n$ r0 S% tSection 4-4 The Trigonometric Integrals
* w% e+ C8 S4 \% NSection 4-5 The Integration by Partial Fractions8 B" b$ }4 y1 z8 @9 z, }' g6 U o
Section 4-6 Trigonometric and Half-Angle Substitution
% O Y4 ~ n6 I, ^ 4 U6 Q w6 |$ V& }7 ?7 B/ Z
CHAPTER 5 THE DEFINITE INTEGRALS$ r' P# Q8 b! R+ E! ^
Section 5-1 Areas and the Definition of Definite Integral
1 V% ?" \8 J& Z% oSection 5-2 The Fundamental Theorem of Calculus, @& Z; F' j) C" C! q
Section 5-3 The Approximate Integration. r8 F( j0 \) f; l& F8 C R
Section 5-4 The Improper Integrals ) s3 ^3 x7 ^. w* e7 ]* K U f* S
2 { P9 {: L; Y5 ICHAPTER 6 APPLICATIONS OF INTEGRATION+ U2 v( O7 C" h- b
Section 6-1 Areas between Curves
7 E* _* p7 v# I/ H ~8 _ C. XSection 6-2 Areas in Polar Coordinates5 ~$ Q$ ?. o- c
Section 6-3 Arc Length/ m* y: x: E5 [" ^/ y
Section 6-4 Volumes and The Volumes of Revolution3 e8 o; l; U3 e: D! z$ U
Section 6-5 Area of a Surface of Revolution O3 ~3 e/ H3 q
Section 6-6 Centroid of A Plane Region: I$ ?! B7 b5 p$ ?/ Y0 S$ r7 F
Section 6-7 Work and The Problems of The Engineering
) M5 A Z0 Z( k. p6 s( Z7 ?
# c( A- Z6 |1 [9 V9 Q" rCHAPTER 7 PARTIAL DERIVATIVES! @: T) T- L& ^0 O% U
Section 7-1 Limits and Continuity( I8 ]" C0 T h2 k& f: w) g
Section 7-2 Partial Derivatives2 j8 K: a( G" V2 a9 y
Section 7-3 The Differentials and Chain Rules
$ p+ l/ a' p+ O: W3 TSection 7-4 Extrema of Functions of Two Variables
* i5 y' w! m# Z( r# @$ bSection 7-5 Directional Derivatives, Gradient and Tangent Plane
" J6 Z A. M( ?) M3 h- B 0 f) `8 U# y* n4 W8 F( N6 j
CHAPTER 8 MULTIPLE INTEGRALS* A! @$ O m9 r: k2 D8 P$ m6 } ?
Section 8-1 Integrals over a Rectangle A6 C5 g1 T, |, ~; w2 T
Section 8-2 Integrals over a Region
* t$ G5 v, M3 G- {Section 8-3 Three-Dimensional Iterated Integrals
3 y# C$ `7 u/ r. k; ~% P# r/ g; L jSection 8-4 Multiple Integration in Polar, Cylindrical and Spherical Coordinates
' R9 l9 M) V) N+ i1 i& KSection 8-5 Applications of Multiple Integrals
8 C# J) g/ N" `3 O- S% | |
|